Decision fusion approach for multitemporal classification

نویسندگان

  • Byeungwoo Jeon
  • David A. Landgrebe
چکیده

This paper propose two decision fusion-based multitemporal classifiers, namely, the jointly likelihood and the weighted majority fusion classifiers, that are derived using two different definitions of the minimum expected cost. Without any overhead incurred by multitemporal processing, a user-selected conventional pixelwise classifier makes local class decisions separately using each temporal data set, and the proposed multitemporal classifiers make the global class decisions by optimally summarizing those local class decisions. The weighted majority decision fusion classifier can handle not only the data set reliabilities but also the classwise reliabilities of each data set. Classification experiment using the jointly likelihood decision fusion with three remotely sensed Thematic Mapper (TM) data sets shows more than 10% overall classification accuracy improvement over the pixelwise maximum likelihood classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A neural-statistical approach to multitemporal and multisource remote-sensing image classification

A data fusion approach to the classification of multisource and multitemporal remote-sensing images is proposed. The method is based on the application of the Bayes rule for minimum error to the “compound” classification of pairs of multisource images acquired at two different dates. In particular, the fusion of multisource data is obtained by using multilayer perceptron neural networks for a n...

متن کامل

Data fusion for remote sensing applications

With a growing number of satellite sensors the coverage of the earth in space, time and the electromagnetic spectrum is increasing fast. To be able to utilize all this information, a number of approaches for data fusion have been presented. The “multi” concept for remote sensing applications refers to multisource, multiscale, multipolarization, multifrequency, and multitemporal imagery. We pres...

متن کامل

Markov Radom Field Modeling for Fusion and Classification of Multisource Remotely Sensed Images

In this paper, we discuss a Markov Random Field (MR) modeling for multisource and multitemporal remotely sensed image fusion and classification. Satellite images provided by individual sensor are incomplete, inconsistent or imprecise. Additional sources may provide complementary information and the fusion of multisource data can create a more consistent interpretation of the scene in which the ...

متن کامل

A COGNITIVE STYLE AND AGGREGATION OPERATOR MODEL: A LINGUISTIC APPROACH FOR CLASSIFICATION AND SELECTION OF THE AGGREGATION OPERATORS

Aggregation operators (AOs) have been studied by many schol- ars. As many AOs are proposed, there is still lacking approach to classify the categories of AO, and to select the appropriate AO within the AO candidates. In this research, each AO can be regarded as a cognitive style or individual dierence. A Cognitive Style and Aggregation Operator (CSAO) model is pro- posed to analyze the mapping ...

متن کامل

Change Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images

The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 37  شماره 

صفحات  -

تاریخ انتشار 1999